Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.376
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 268, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582828

RESUMEN

BACKGROUND: Knee osteoarthritis (KOA) is a prevalent and debilitating condition that markedly affects the sit-to-stand (STS) activity of patients, a prerequisite for daily activities. Biomechanical recognition of movements in patients with mild KOA is currently attracting attention. However, limited studies have been conducted solely on the observed differences in sagittal plane movement and muscle activation. AIM: This study aimed to identify three-dimensional biomechanical and muscle activation characteristics of the STS activity in patients with mild KOA. METHODS: A cross-sectional study was conducted to observe the differences between patients with mild KOA and a control group (CG). It was conducted to observe the differences in muscle activation, including root mean square (RMS%) and integrated electromyography (items), kinematic parameters like range of motion (ROM) and maximum angular velocity, as well as dynamic parameters such as joint moment and vertical ground reaction force (vGRF). RESULTS: Patients with mild KOA had a higher body mass index and longer task duration. In the sagittal plane, patients with KOA showed an increased ROM of the pelvic region, reduced ROM of the hip-knee-ankle joint, and diminished maximum angular velocity of the knee-ankle joint. Furthermore, patients with KOA displayed increased knee-ankle joint ROM in the coronal plane and decreased ankle joint ROM in the horizontal plane. Integrated vGRF was higher in both lower limbs, whereas the vGRF of the affected side was lower. Furthermore, patients showed a decreased peak adduction moment (PADM) and increased peak external rotation moment in the knee joint and smaller PADM and peak internal rotation moment in the ankle joint. The affected side exhibited decreased RMS% and iEMG values of the gluteus medius, vastus medialis, and vastus lateralis muscles, as well as a decreased RMS% of the rectus femoris muscle. Conversely, RMS% and iEMG values of the biceps femoris, lateral gastrocnemius, and medial gastrocnemius muscles were higher. CONCLUSION: The unbalanced activation characteristics of the anterior and posterior muscle groups, combined with changes in joint moment in the three-dimensional plane of the affected joint, may pose a potential risk of injury to the irritated articular cartilage.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico , Fenómenos Biomecánicos , Estudios Transversales , Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Articulación de la Rodilla/fisiología , Electromiografía
2.
PLoS One ; 19(4): e0297910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603690

RESUMEN

Dynamic knee valgus (DKV) occurs during landing after a fatigue task involving the lower extremity. However, the manner in which different peripheral fatigue tasks affect DKV remains unknown. In this study, we investigated the DKV via electromyography during single-leg landing considering the hip-joint fatigue task (HFT) and knee-joint fatigue task (KFT) performed by healthy men. We recruited 16 healthy male participants who performed a single-leg jump-landing motion from a height of 20 cm before and after an isokinetic hip abduction/adduction task (HFT) and knee extension/flexion task (KFT). Three-dimensional motion analysis systems were attached to the left gluteus medius and quadriceps, and surface electromyography was used to analyze the lower limb kinematics, kinetics, and muscle activity. The primary effects and interactions of the task and fatigue were identified based on the two-way repeated-measures analysis of variance. The results of the average angle during landing indicated that DKV occurs in KFT, whereas HFT applies external forces that adduct and internally rotate the knee at peak vertical ground reaction force (vGRF). Furthermore, both KFT and HFT exhibited an increase in muscle activity in the quadriceps. The analysis revealed that the occurrence of DKV varies depending on the peripheral fatigue task, and the effects on average DKV during landing and DKV at peak vGRF vary depending on the peripheral fatigue task.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Pierna , Humanos , Masculino , Fenómenos Biomecánicos , Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Articulación de la Rodilla/fisiología
3.
J Biomech ; 167: 112030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583375

RESUMEN

Young female athletes participating in sports requiring rapid changes of direction are at heightened risk of suffering traumatic knee injury, especially noncontact rupture of the anterior cruciate ligament (ACL). Clinical studies have revealed that geometric features of the tibiofemoral joint are associated with increased risk of suffering noncontact ACL injury. However, the relationship between three-dimensional (3D) tibiofemoral geometry and knee mechanics in young female athletes is not well understood. We developed a statistically augmented computational modeling workflow to determine relationships between 3D geometry of the knee and tibiofemoral kinematics and ACL force in response to an applied loading sequence of compression, valgus, and anterior force, which is known to load the ACL. This workflow included 3D characterization of tibiofemoral bony geometry via principal component analysis and multibody dynamics models incorporating subject-specific knee geometries. A combination of geometric features of both the tibia and the femur that spanned all three anatomical planes was related to increased ACL force and to increased kinematic coupling (i.e., anterior, medial, and distal tibial translations and internal tibial rotation) in response to the applied loads. In contrast, a uniplanar measure of tibiofemoral geometry that is associated with ACL injury risk, sagittal plane slope of the lateral tibial plateau subchondral bone, was not related to ACL force. Thus, our workflow may aid in developing mechanics-based ACL injury screening tools for young, active females based on a unique combination of bony geometric features that are related to increased ACL loading.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Humanos , Femenino , Lesiones del Ligamento Cruzado Anterior/complicaciones , Articulación de la Rodilla/fisiología , Ligamento Cruzado Anterior/fisiología , Tibia/fisiología , Atletas , Simulación por Computador , Fenómenos Biomecánicos
4.
Med Eng Phys ; 126: 104130, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621832

RESUMEN

Biphasic models have been widely used to simulate the time-dependent biomechanical response of soft tissues. Modelling techniques of joints with biphasic weight-bearing soft tissues have been markedly improved over the last decade, enhancing our understanding of the function, degenerative mechanism and outcomes of interventions of joints. This paper reviews the recent advances, challenges and opportunities in computational models of joints with biphasic weight-bearing soft tissues. The review begins with an introduction of the function and degeneration of joints from a biomechanical aspect. Different constitutive models of articular cartilage, in particular biphasic materials, are illustrated in the context of the study of contact mechanics in joints. Approaches, advances and major findings of biphasic models of the hip and knee are presented, followed by a discussion of the challenges awaiting to be addressed, including the convergence issue, high computational cost and inadequate validation. Finally, opportunities and clinical insights in the areas of subject-specific modeling and tissue engineering are provided and discussed.


Asunto(s)
Cartílago Articular , Modelos Biológicos , Humanos , Fenómenos Biomecánicos , Articulaciones/fisiología , Cartílago Articular/fisiología , Simulación por Computador , Articulación de la Rodilla/fisiología , Análisis de Elementos Finitos
5.
BMC Musculoskelet Disord ; 25(1): 318, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654258

RESUMEN

BACKGROUND: Non-contact anterior cruciate ligament (ACL) injuries are a major concern in sport-related activities due to dynamic knee movements. There is a paucity of finite element (FE) studies that have accurately replicated the knee geometry, kinematics, and muscle forces during dynamic activities. The objective of this study was to develop and validate a knee FE model and use it to quantify the relationships between sagittal plane knee kinematics, kinetics and the resulting ACL strain. METHODS: 3D images of a cadaver knee specimen were segmented (bones, cartilage, and meniscus) and meshed to develop the FE model. Knee ligament insertion sites were defined in the FE model via experimental digitization of the specimen's ligaments. The response of the model was validated against multiple physiological knee movements using published experimental data. Single-leg jump landing motions were then simulated on the validated model with muscle forces and kinematic inputs derived from motion capture and rigid body modelling of ten participants. RESULTS: The maximum ACL strain measured with the model during jump landing was 3.5 ± 2.2%, comparable to published experimental results. Bivariate analysis showed no significant correlation between body weight, ground reaction force and sagittal plane parameters (such as joint flexion angles, joint moments, muscle forces, and joint velocity) and ACL strain. Multivariate regression analysis showed increasing trunk, hip and ankle flexion angles decreases ACL strain (R2 = 90.04%, p < 0.05). CONCLUSIONS: Soft landing decreases ACL strain and the relationship could be presented through an empirical equation. The model and the empirical relation developed in this study could be used to better predict ACL injury risk and prevention strategies during dynamic activities.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/fisiología , Fenómenos Biomecánicos/fisiología , Masculino , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/prevención & control , Lesiones del Ligamento Cruzado Anterior/etiología , Articulación de la Rodilla/fisiología , Cadáver , Simulación por Computador , Análisis de Elementos Finitos , Adulto , Femenino , Movimiento/fisiología , Adulto Joven , Persona de Mediana Edad , Estrés Mecánico , Músculo Esquelético/fisiología , Modelos Biológicos
6.
Medicina (Kaunas) ; 60(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38541093

RESUMEN

Background and Objectives: Hypermobility has been linked to decreased knee performance, including isokinetic and isometric knee strength. This study aimed to determine whether athletes with and without knee hyperextension have different hamstring-to-quadriceps strength (H/Q) ratios and to investigate the associations between knee hyperextension indices and H/Q ratios and anthropometric characteristics. Materials and Methods: The sample consisted of 47 healthy male athletes without knee injuries aged 23.48 ± 3.54 years. The variables included the degree of knee hypermobility, isokinetic parameters of the leg musculature, and anthropometric indices. Differences between athletes with and without hyperextension were calculated using an independent sample t-test, effect sizes, and discriminant analysis, while associations between the variables were checked by Pearson's correlation coefficient and multiple regression analysis. Results: Athletes with hyperextended knees had shorter legs (t value = -2.23, p = 0.03, moderate ES) and shins (t = -2.64, p = 0.01, moderate ES) and a lower H/Q ratio at an angular velocity of 60°/s (t = -2.11, p = 0.04, moderate ES) than those in the nonhyperextended group did; these differences were supported by discriminant analysis (Wilks' L = 0.60, p = 0.01). An increase in the H/Q ratio at an angular velocity of 60°/s was associated with the degree of knee hypermobility (R = -0.29, p = 0.04). Conclusions: This research showed that athletes with knee hypermobility have weaker hamstring strength and thus a lower H/Q strength ratio at lower angular velocities. These findings suggest that targeted strength training programs for leg (i.e., hamstrings) muscles should help individuals with knee hypermobility.


Asunto(s)
Articulación de la Rodilla , Rodilla , Masculino , Humanos , Articulación de la Rodilla/fisiología , Rodilla/fisiología , Fuerza Muscular/fisiología , Pierna/fisiología , Atletas , Músculo Esquelético/fisiología
7.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 978-986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431913

RESUMEN

PURPOSE: This study aimed to investigate the length change patterns of the native deep medial collateral ligament (dMCL) and potential anteromedial reconstructions (AMs) that might be added to a reconstruction of the superficial MCL (sMCL) to better understand the control of anteromedial rotatory instability (AMRI). METHODS: Insertion points of the dMCL and potential AM reconstructions were marked with pins (tibial) and eyelets (femoral) in 11 cadaveric knee specimens. Length changes between the pins and eyelets were then tested using threads in a validated kinematics rig with muscle loading of the quadriceps and iliotibial tract. Between 0° and 100° knee flexion, length change pattern of the anterior, middle and posterior part of the dMCL and simulated AM reconstructions were analysed using a rotary encoder. Isometry was tested using the total strain range (TSR). RESULTS: The tibiofemoral distance of the anterior dMCL part lengthened with flexion (+12.7% at 100°), whereas the posterior part slackened with flexion (-12.9% at 100°). The middle part behaved almost isometrically (maximum length: +2.8% at 100°). Depending on the femoral position within the sMCL footprint, AM reconstructions resulted in an increase in length as the knee flexed when a more centred position was used, irrespective of the tibial attachment position. Femoral positioning in the posterior aspect of the sMCL footprint exhibited <4% length change and was slightly less tight in flexion (min TSR = 3.6 ± 1.5%), irrespective of the tibial attachment position. CONCLUSION: The length change behaviour of potential AM reconstructions in a functionally intact knee is mainly influenced by the position of the femoral attachment, with different tibial attachments having a minimal effect on length change. Surgeons performing AM reconstructions to control AMRI would be advised to choose a femoral graft position in the posterior part of the native sMCL attachment to optimise graft length change behaviour. Given the high frequency of MCL injuries, sufficient restoration of AMRI is essential in isolated and combined ligamentous knee injuries. LEVEL OF EVIDENCE: There is no level of evidence as this study was an experimental laboratory study.


Asunto(s)
Ligamentos Colaterales , Traumatismos de la Rodilla , Humanos , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiología , Fémur/cirugía , Tibia/cirugía , Fenómenos Biomecánicos , Rango del Movimiento Articular/fisiología , Cadáver
8.
Am J Sports Med ; 52(5): 1328-1335, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459686

RESUMEN

BACKGROUND: It has been shown that chronic ankle instability (CAI) leads to abnormalities in neuromuscular control of more proximal joints than the ankle. Although strength of the hip and the ankle muscles has been largely investigated providing concordant results, limited evidence with contrasting results has been reported regarding knee extensor and flexor muscles. PURPOSE: To investigate maximal and submaximal isometric muscle strength in individuals with CAI. STUDY DESIGN: Controlled laboratory study. METHODS: Fifteen participants with unilateral CAI and 15 healthy matched controls were recruited. To quantify maximal strength, peak forces were recorded during a maximal isometric voluntary contraction of knee extensor and flexor muscles at 30° and 90° of knee flexion and normalized by the body weight of each participant. At both angles, submaximal isometric contractions at 20%, 50%, and 80% of the maximal voluntary isometric contraction were performed to analyze strength steadiness, in terms of coefficient of variation, and strength accuracy, in terms of absolute error. During all the assessments, knee extensor and flexor muscle activation was recorded by means of surface electromyography. RESULTS: Knee flexor maximal isometric strength was significantly lower in the injured limb of individuals with CAI in comparison with healthy controls at both 30° (0.15 ± 0.05 vs 0.20 ± 0.05; P < .05) and 90° (0.14 ± 0.04 vs 0.18 ± 0.05; P < .05). Knee extensor and flexor steadiness was significantly lower (higher coefficient of variation) in both the injured and the noninjured limbs of individuals with CAI in comparison with healthy individuals at 90° and at 30° for knee flexor steadiness of the injured limb. Knee extensor and flexor accuracy was lower (higher absolute error) in both the injured and noninjured limbs of individuals with CAI in comparison with healthy individuals, mainly at 30°, while at 90° it was lower only in the injured limb. No differences between the 2 groups were found for maximal isometric strength of knee extensor muscles, as well as for muscle activations. CONCLUSION: Individuals with CAI show abnormalities in maximal and submaximal isometric strength of knee flexor muscles, and submaximal strength of the knee extensor muscles. Further studies should deeply investigate mechanisms leading to these abnormalities. CLINICAL RELEVANCE: Rehabilitation interventions should consider abnormalities of neuromuscular control affecting joints more proximal than the ankle in individuals with CAI. REGISTRATION: NCT05273177 (ClinicalTrials.gov identifier).


Asunto(s)
Tobillo , Inestabilidad de la Articulación , Humanos , Electromiografía , Contracción Isométrica/fisiología , Rodilla/fisiología , Articulación de la Rodilla/fisiología , Extremidad Inferior , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología
9.
Clin Biomech (Bristol, Avon) ; 114: 106218, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479343

RESUMEN

BACKGROUND: Knee osteoarthritis causes structural joint damage. The resultant symptoms can impair the ability to recover from unexpected gait perturbations. This study compared balance recovery responses to moderate gait perturbations between individuals with knee osteoarthritis and healthy individuals. METHODS: Kinematic data of 35 individuals with end-stage knee osteoarthritis, and 32 healthy individuals in the same age range were obtained during perturbed walking on a treadmill at 1.0 m/s. Participants received anteroposterior (acceleration or deceleration) or mediolateral perturbations during the stance phase. Changes from baseline in margin of stability, step length, step time, and step width during the first two steps after perturbation were compared between groups using a linear regression model. Extrapolated center of mass excursion was descriptively analyzed. FINDINGS: After all perturbation modes, extrapolated center of mass trajectories overlapped between individuals with knee osteoarthritis and healthy individuals. Participants predominantly responded to mediolateral perturbations by adjusting their step width, and to anteroposterior perturbations by adjusting step length and step time. None of the perturbation modes yielded between-group differences in changes in margin of stability and step width during the first two steps after perturbation. Small between-group differences were observed for step length (i.e. 2 cm) of the second step after mediolateral and anteroposterior perturbations, and for step time (i.e. 0.01-0.02 s) of first step after mediolateral perturbations and the second step after outward and belt acceleration perturbations. INTERPRETATION: Despite considerable pain and damage to the knee joint, individuals with knee osteoarthritis showed comparable balance recovery responses after moderate gait perturbations to healthy participants.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Marcha/fisiología , Caminata/fisiología , Articulación de la Rodilla/fisiología , Fenómenos Biomecánicos , Equilibrio Postural/fisiología
10.
Clin Biomech (Bristol, Avon) ; 113: 106213, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38458001

RESUMEN

BACKGROUND: Leg extensions should be avoided in the early stages after anterior cruciate ligament reconstruction because the force exerted by the quadriceps muscle leads to anterior tibial displacement. To allow for safe quadriceps training in the knee extension range during this period, we devised the leaf spring exercise, which involves placing subjects in the prone position with their knee slightly flexed and instructing them to perform maximum isometric quadriceps contractions while supporting the proximal region of the lower leg's anterior surface and immobilizing the femur's posterior surface to prevent lifting. The current study aimed to examine the safety of Leaf spring exercise by determining the femur-tibia relationship using ultrasound imaging. METHODS: This controlled laboratory study included patients with unilateral anterior cruciate ligament-deficient knees (8 men and 8 women; age, 24.2 ± 8.3 years) who were instructed to perform Leaf spring exercise of both lower limbs. We measured the femur-tibia-step-off, which indicates the distance between the last point of the medial and lateral condyles of the femur and posterior margin of the tibial plateau, as a parameter to evaluate anterior tibial displacement via ultrasound diagnostic device. Further, peak torque of the quadriceps muscle was calculated using force measurement device. FINDINGS: No difference in anterior tibial displacement and peak torque was observed between the uninjured and injured sides during Leaf spring exercise. INTERPRETATION: Leaf spring exercise may add some strain on the reconstructed anterior cruciate ligament; hence, it can be considered a safe quadriceps exercise in the knee extension range.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Músculo Cuádriceps/fisiología , Lesiones del Ligamento Cruzado Anterior/cirugía , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Reconstrucción del Ligamento Cruzado Anterior/métodos
11.
Sci Rep ; 14(1): 5990, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472313

RESUMEN

Human locomotion is controlled by spinal neuronal networks of similar properties, function, and organization to those described in animals. Transspinal stimulation affects the spinal locomotor networks and is used to improve standing and walking ability in paralyzed people. However, the function of locomotor centers during transspinal stimulation at different frequencies and intensities is not known. Here, we document the 3D joint kinematics and spatiotemporal gait characteristics during transspinal stimulation at 15, 30, and 50 Hz at sub-threshold and supra-threshold stimulation intensities. We document the temporal structure of gait patterns, dynamic stability of joint movements over stride-to-stride fluctuations, and limb coordination during walking at a self-selected speed in healthy subjects. We found that transspinal stimulation (1) affects the kinematics of the hip, knee, and ankle joints, (2) promotes a more stable coordination at the left ankle, (3) affects interlimb coordination of the thighs, and (4) intralimb coordination between thigh and foot, (5) promotes greater dynamic stability of the hips, (6) increases the persistence of fluctuations in step length variability, and lastly (7) affects mechanical walking stability. These results support that transspinal stimulation is an important neuromodulatory strategy that directly affects gait symmetry and dynamic stability. The conservation of main effects at different frequencies and intensities calls for systematic investigation of stimulation protocols for clinical applications.


Asunto(s)
Marcha , Caminata , Humanos , Caminata/fisiología , Marcha/fisiología , Locomoción/fisiología , Articulación de la Rodilla/fisiología , Extremidad Inferior , Fenómenos Biomecánicos
12.
Knee Surg Sports Traumatol Arthrosc ; 32(5): 1298-1307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38504507

RESUMEN

PURPOSE: Total knee arthroplasty (TKA), which has medial pivot and mobile-bearing mechanisms, has been developed and clinically used. However, the in vivo dynamic kinematics of the mobile medial pivot-type TKA (MMPTKA) is unclear. This study analysed the in vivo kinematics of MMPTKA in weight-bearing and nonweight-bearing conditions. METHODS: The study included 10 knees that underwent primary TKA using MMPTKA. After TKA, lateral view radiographs of the knee in full extension, 90° of flexion and passive full flexion were taken under general anaesthesia in the nonweight-bearing condition. At least 6 months postoperatively, knee motion during squatting from a weight-bearing standing position was observed using a flat-panel detector and analysed using the three-dimensional-to-two-dimensional image registration technique. RESULTS: Under anaesthesia: in passive full flexion, the anteroposterior (AP) locations of the femoral component's medial and lateral distal points were 10.2 and 16.0 mm posterior, and the rotational angles of the femoral component's X-axis (FCX) and insert were 8.1° external rotation and 18.5° internal rotation to full extension, respectively. Squatting: the AP translations of the femoral component's medial and lateral most distal points were 2.2 and 6.4 mm, and the rotational angles of the FCX and insert were 5.7° and 1.6° external rotation, respectively. Significant differences were observed in the AP translation of the femoral component's medial and lateral most distal points and changes in the insert's rotational angle when comparing under anaesthesia and squatting. CONCLUSIONS: The kinematics of the insert in MMPTKA was significantly influenced by loading and muscle contraction. The femoral component exhibited substantial external rotation and posterior translation under anaesthesia, which may contribute to achieving an optimal range of motion. The insert remained relatively stable during squatting and minimal rotation was observed, indicating good stability. MMPTKA was expected to demonstrate rational kinematics by incorporating mobile and medial pivot mechanisms. LEVEL OF EVIDENCE: Level IV, prospective biomechanical case series study.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Rango del Movimiento Articular , Soporte de Peso , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Artroplastia de Reemplazo de Rodilla/instrumentación , Masculino , Femenino , Anciano , Fenómenos Biomecánicos , Persona de Mediana Edad , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/fisiopatología , Prótesis de la Rodilla , Osteoartritis de la Rodilla/cirugía , Osteoartritis de la Rodilla/fisiopatología , Anciano de 80 o más Años , Rotación
13.
J Sports Sci ; 42(4): 365-372, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38507567

RESUMEN

Patellofemoral pain syndrome (PFPS) is a common injury among runners, and it is thought that abnormal lower extremity biomechanics contribute to its development. However, the relationship between biomechanical changes after a marathon and PFPS injury remains limited. This study aims to investigate whether differences in knee and hip kinematics and lower extremity muscle activities exist in recreational runners before and after a marathon. Additionally, it aims to explore the relationship between these biomechanical changes and the development of PFPS injury. 12 recreational runners participated in the study. Kinematics and muscle activities of the lower extremity were recorded during walking (5 km/h) and running (10 km/h) tasks within 24 hours before and within 5 hours after a marathon. After the marathon, there was a significant decrease in peak knee flexion (walking: p = 0.006; running: p = 0.006) and an increase in peak hip internal rotation (walking: p = 0.026; running: p = 0.015) during the stance phase of both walking and running compared to before the marathon. The study demonstrates a decrease in knee flexion and an increase in hip internal rotation during the stance phase of gait tasks after completing a marathon, which may increase the risk of developing PFPS injury.


Asunto(s)
Extremidad Inferior , Carrera de Maratón , Músculo Esquelético , Síndrome de Dolor Patelofemoral , Caminata , Humanos , Fenómenos Biomecánicos , Caminata/fisiología , Masculino , Adulto , Músculo Esquelético/fisiología , Extremidad Inferior/fisiología , Femenino , Carrera de Maratón/fisiología , Síndrome de Dolor Patelofemoral/fisiopatología , Carrera/fisiología , Marcha/fisiología , Articulación de la Cadera/fisiología , Cadera/fisiología , Electromiografía , Rodilla/fisiología , Adulto Joven , Articulación de la Rodilla/fisiología , Rotación , Estudios de Tiempo y Movimiento
14.
J Sports Sci Med ; 23(1): 34-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455437

RESUMEN

This study aimed to narrow down the possible mechanisms of Post-Activation Performance Enhancement (PAPE), especially if they are exclusively found in the muscle. It was therefore investigated whether (1) the PAPE effect is influenced by neural factors and (2) if Post-Activation-Potentiation (PAP) influences PAPE. Thirteen strength-trained participants (26.5 ± 3.2 years) took part in at least one of three interventions (PAP, PAPE-Electrical (PAPEE), and PAPE-Voluntary (PAPEV)). Conditioning contractions (CC) and testing involved isometric knee extensions performed on an isokinetic device at an 80° knee flexion angle. The CC was either performed voluntarily (PAP, PAPEV) or was evoked through electrical stimulation (PAPEE). Testing was performed at baseline and after two seconds, four minutes, eight minutes, and twelve minutes of the CC. Maximum voluntary isometric contractions (MVIC) for the PAPE trials and supramaximal twitches for the PAP trial were used for testing. Parameters of interest were peak torque and rate of torque development (RTD), and electromyography (EMG) amplitude of the quadriceps (only PAPE). Repeated measures ANOVA and simple contrast comparisons were used for statistical analysis. Peak torque (p < 0.001, η2p = 0.715) and RTD (p = 0. 005, η2p = 0.570) increased significantly during the PAP protocol immediately two seconds after the CC and decreased to near baseline values for the following time points (p > 0.05). Peak torque, RTD, and peak EMG showed no significant differences during PAPEE and PAPEV trials (p > 0.05). Due to the lack of a visible PAPE effect, the question of whether neural mechanisms influence PAPE cannot be answered. Due to the time course of the PAP analysis, it is questionable if these mechanisms play a role in PAPE. The assumption that the PAP mechanism influences PAPE cannot be confirmed for the same reason.


Asunto(s)
Articulación de la Rodilla , Músculo Esquelético , Adulto , Humanos , Adulto Joven , Electromiografía , Contracción Isométrica/fisiología , Rodilla/fisiología , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología
15.
J Strength Cond Res ; 38(4): 671-680, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513175

RESUMEN

ABSTRACT: Mongold, SJ, Ricci, AW, Hahn, ME, and Callahan, DM. Skeletal muscle compliance and echogenicity in resistance-trained and nontrained women. J Strength Cond Res 38(4): 671-680, 2024-Noninvasive assessment of muscle mechanical properties in clinical and performance settings tends to rely on manual palpation and emphasizes examination of musculotendinous stiffness. However, measurement standards are highly subjective. The purpose of the study was to compare musculotendinous stiffness in adult women with varying resistance training history while exploring the use of multiple tissue compliance measures. We identified relationships between tissue stiffness and morphology, and tested the hypothesis that combining objective measures of morphology and stiffness would better predict indices of contractile performance. Resistance-trained (RT) women (n = 11) and nontrained (NT) women (n = 10) participated in the study. Muscle echogenicity and morphology were measured using B-mode ultrasonography (US). Vastus lateralis (VL) and patellar tendon (PT) stiffness were measured using digital palpation and US across submaximal isometric contractions. Muscle function was evaluated during maximal voluntary isometric contraction (MVIC) of the knee extensors (KEs). Resistance trained had significantly greater PT stiffness and reduced echogenicity (p < 0.01). Resistance trained also had greater strength per body mass (p < 0.05). Muscle echogenicity was strongly associated with strength and rate of torque development (RTD). Patellar tendon passive stiffness was associated with RTD normalized to MVIC (RTDrel; r = 0.44, p < 0.05). Patellar tendon stiffness was greater in RT young women. No predictive models of muscle function incorporated both stiffness and echogenicity. Because RTDrel is a clinically relevant measure of rehabilitation in athletes and can be predicted by digital palpation, this might represent a practical and objective measure in settings where RTD may not be easy to measure directly.


Asunto(s)
Articulación de la Rodilla , Músculo Esquelético , Adulto , Humanos , Femenino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Articulación de la Rodilla/fisiología , Contracción Muscular/fisiología , Músculo Cuádriceps/fisiología , Contracción Isométrica/fisiología , Ultrasonografía , Fuerza Muscular/fisiología , Torque
16.
J Sports Sci ; 42(3): 247-254, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38456685

RESUMEN

Volleyball-specific footwear with higher collar heights (a mid-cut shoe) are worn to restrict ankle motion. Reduced ankle dorsiflexion has been associated with increased frontal plane motion and injury risk at the knee. With the high frequency of unilateral landings in volleyball, the purpose of this study was to determine the effect of volleyball-specific shoes and limb dominance on knee landing mechanics in collegiate volleyball players. It was hypothesized that participants would exhibit smaller sagittal plane and greater frontal plane knee joint mechanics in mid-cut and dominant limb and that vertical and posterior directed ground reaction forces would be greater wearing mid-cut, yet similar between limbs. Seventeen female volleyball players performed unilateral landings on each limb in mid-cut and low-top volleyball shoes. For shoe main effects, smaller peak dorsiflexion angle and internal peak plantarflexion moment and greater peak medial ground reaction force were found in the mid-cut but with no impact on knee mechanics. For limb main effects, the internal peak knee abduction moment was greater in the dominant limb. Greater peak lateral ground reaction force was found in the interaction between the non-dominant limb and low-top. Further research is warranted to better understand shoe and limb impact in volleyball players.


Asunto(s)
Articulación de la Rodilla , Zapatos , Voleibol , Humanos , Voleibol/fisiología , Femenino , Fenómenos Biomecánicos , Adulto Joven , Articulación de la Rodilla/fisiología , Equipo Deportivo , Lateralidad Funcional/fisiología , Diseño de Equipo
17.
Knee Surg Sports Traumatol Arthrosc ; 32(5): 1096-1104, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461373

RESUMEN

PURPOSE: To investigate the landing strategies used after discontinuing and continuing the use of a functional knee brace (FKB) while performing a drop jump. METHODS: Following published methodology and power analysis, 23 uninjured male athletes, mean age of 19.4 ± 3.0 years, performed seven tests, during three test conditions (nonbraced, braced and removed brace or continued brace use), over 6 days of 12 testing sessions (S) for a total of 38.5 h. Each subject was provided with a custom-fitted FKB. This study focuses on the single leg drop jump kinetics during S12 when subjects were randomly selected to remove the FKB after 17.5 h or continued use of FKB. The time to peak vertical ground reaction forces (PVGRF) and PVGRF were recorded on landing in eight trials. RESULTS: After brace removal, a significantly shorter mean time to PVGRF was recorded (9.4 ± 22.9 msec (3.9%), p = 0.005, 95% confidence interval (95% CI): -168.1, 36.1), while continued brace use required a nonsignificant (n.s.) longer mean duration to achieve PVGRF (19.4 ± 53.6 msec (8.9%), n.s., 95% CI: -49.7, 73.4). No significant mean PVGRF difference was found in brace removal (25.3 ± 65.8 N) and continued brace use (25.1 ± 23.0 N). CONCLUSION: Removal of FKB after 17.5 h of use led to a significantly shorter time to achieve PVGRF, while continued brace use for 21 h required a longer duration to achieve PVGRF, suggesting faster and slower knee joint loading, respectively. Understanding the concerns associated with the use of FKB and the kinetics of the knee joint will assist clinicians in counselling athletes about the risks and benefits of using an FKB. LEVEL OF EVIDENCE: Level II.


Asunto(s)
Tirantes , Articulación de la Rodilla , Humanos , Masculino , Articulación de la Rodilla/fisiología , Adulto Joven , Fenómenos Biomecánicos , Factores de Tiempo , Soporte de Peso , Adolescente , Adulto , Remoción de Dispositivos
18.
J Sport Rehabil ; 33(3): 166-173, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340711

RESUMEN

CONTEXT: Anterior cruciate ligament injuries are directly related to the control of dynamic knee valgus in the landing of a jump, and this is mainly due to the correct activation and neuromuscular function of the lower-extremity muscles. The aim of the study is to assess the relationship between lower limb muscle activity during a single-legged drop jump and knee frontal plane projection angle (FPPA). DESIGN: A correlation study. METHODS: Thirty healthy collegiate female athletes were included in the study. Main outcomes measures were peak knee FPPA and muscle activity (% of maximal voluntary isometric contraction). Peak knee FPPA during a single-legged drop jump test was identified using a 2-dimensional motion analysis system. Muscle activity was assessed using a surface electromyograph for gluteus maximus, gluteus medius, biceps femoris, semitendinosus, vastus medialis quadriceps, vastus lateralis quadriceps, medial gastrocnemius, and lateral gastrocnemius. All variables were assessed for both dominant and nondominant limbs. A correlation analysis between peak knee FPPA and muscle activity was performed. Statistical significance was set at P <.05. RESULTS: A mean peak knee FPPA of 14.52° and 13.38° was identified for dominant and nondominant limb single-legged drop jump test, respectively. Muscle activity (% of maximal voluntary isometric contraction) for muscles assessed ranged from 43.97% to 195.71% during the single-legged drop jump test. The correlation analysis found no significant correlation between any of the muscles assessed and peak knee FPPA during the single-legged drop jump test (Pearson coefficient between -.3 and .1). CONCLUSIONS: There is no association between muscle activity from the lower limb muscles and the knee FPPA during a single-legged drop jump in female athletes. Thus, different muscle properties should be assessed in order to understand such an important movement as the knee FPPA during a jump.


Asunto(s)
Articulación de la Rodilla , Rodilla , Femenino , Humanos , Articulación de la Rodilla/fisiología , Músculo Cuádriceps , Atletas , Nalgas
19.
J Orthop Res ; 42(5): 915-922, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366965

RESUMEN

Biplane radiography has emerged as the gold standard for accurately measuring in vivo skeletal kinematics during physiological loading. The purpose of this scoping review was to map the extent, range, and nature of biplane radiography research on humans from 2004 through 2022. A literature search was performed using the terms biplane radiography, dual fluoroscopy, dynamic stereo X-ray, and biplane videoradiography. All articles referenced in included publications were also assessed for inclusion. A secondary search was then performed using the names of the most frequently appearing principal investigators among included papers. A total of 379 manuscripts were identified and included. The first studies published in 2004 focused on the native knee, followed by studies of the ankle joint complex in 2006, the shoulder in 2007, and the spine in 2008. Nearly half (180, 47.5%) of all manuscripts investigated knee kinematics. The average number of publications increased from 21.6 per year from 2012 to 2017 to 34.6 per year from 2017 to 2022. The average number of participants per study was 16, with a range from 1 to 101. A total of 90.2% of studies featured cohorts of 30 or less. The most prolific research groups for each joint were: Mass General Hospital (lumbar spine and knee), Henry Ford Hospital (shoulder), the University of Utah (ankle and hip), The University of Pittsburgh (cervical spine), and Brown University (hand/wrist/elbow). Future advancements in biplane radiography research are dependent upon increased availability of these imaging systems, standardization of data collection protocols, and the development of automated approaches to expedite data processing.


Asunto(s)
Articulación de la Rodilla , Humanos , Fenómenos Biomecánicos , Radiografía , Fluoroscopía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Rayos X
20.
Clin Biomech (Bristol, Avon) ; 113: 106212, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38387145

RESUMEN

BACKGROUND: Joint moment arm is a major element that determines joint torque. This study aimed to investigate factors associated with knee extensor and valgus moment arms of the patellar tendon in older individuals with and without knee osteoarthritis. METHODS: Thirty-six participants with knee osteoarthritis (mean age, 78.1 ± 6.0 years) and 43 healthy controls (mean age, 73.0 ± 6.3 years) were analyzed. Magnetic resonance images (MRI) from the knee joint and thigh were acquired using a 3.0 T MRI scanner. The three-dimensional moment arm was defined as the distance between the contact point of the tibiofemoral joint and the patellar tendon line. The three-dimensional moment arm was decomposed into sagittal and coronal components, which were calculated as knee extensor and valgus moment arms, respectively. Quadriceps muscle volume, epicondylar width, bisect offset, Insall-Salvati ratio, and Kellgren-Lawrence grade were assessed. Multiple regression analyses were performed in the healthy control and knee osteoarthritis groups, with knee extensor and valgus moment arms as dependent variables. FINDINGS: Knee extensor moment arm was significantly associated with epicondylar width and the Insall-Salvati ratio in the healthy control group and with Kellgren-Lawrence grade, epicondylar width, and quadriceps muscle volume in the knee osteoarthritis group. Valgus knee moment arm was significantly associated with bisect offset in both the groups. INTERPRETATION: Knee size, osteoarthritis severity, and quadriceps muscle volume affect the knee extensor moment arm in knee osteoarthritis, whereas lateral patellar displacement affects the valgus knee moment arms in older individuals with and without knee osteoarthritis.


Asunto(s)
Osteoartritis de la Rodilla , Ligamento Rotuliano , Humanos , Anciano , Anciano de 80 o más Años , Ligamento Rotuliano/diagnóstico por imagen , Ligamento Rotuliano/fisiología , Osteoartritis de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Rótula/fisiología , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...